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Abstract- In this decade and progressing into 21st Century, NASA will have missions including

Space Station and the Earth related Planet Sciences. To support these missions, a high degree of

sophistication in machine automation and an increasing amount of data processing throughput

rate are necessary. Meeting these challenges requires intelligent machines, designed to support

the necessary automations in a remote space and hazardous environment. There are two

approaches to designing these intelligent machines. One of these is the knowledge-based expert

system approach, namely AI. The other is a non-rule approach based on parallel and distributed

computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union

of AI and NI is the solution to the problem stated above.
The NI segment of this unit extracts features automatically by applying Cauchy

simulated annealing [Phys. Lett. A122_ p.157; Proc. IEEE, V.75.p.1538] to a mini-max cost energy

function. The feature discovered by NI can then be passed to the AI system for future processing,

and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm

exactly, and can provide the context knowledge base as the constraints of neurocomputing. Such

integration is exemplified by the pattern recognition Human Visual Systems; tracking of gray

scaled objects for instance. Consequently, both AI and NI can work together to solve the same

problem by unifying into an intelligent processor.

The mini-max cost function that solves the unknown feature can furthermore give us a top-

down architectural design of neural networks by means of Taylor series expansion of the cost

function. A typical mini-max cost function consists of (1) the sample variance of each class in the

numerator, and (2) separation of the center of each class in the denominator. Thus, when the

total cost energy is minimized, the conflicting goals of intraclass clustering and interclass

segregation are achieved simultaneously. This Taylor expansion variable is a neuronic vector

representation which traces along a Peano's curve. A selective space-filling capability exists

when a more detailed spatial resolution becomes desirable at the picture where an interesting

change occurs [IJCNN-90, D.C., p. II-76].

INTRODUCTION

Research and operations that support NASA's missions have experienced an increasing volume of data

that requires automated information processing, among others (e.g. Discovery shuttle between the space station

and the earth shown in Fig. 1 Top). One necessity is the next generation smart sensors. They are needed for two

reasons. First, they are needed to perform multisensor data auto-fusion (between thematic mapper spectral band

imageries and high spatial resolution imageries) in order to improve the picture resolution beyond the

geometrical corrections and proper registrations. They are also needed to extract features to identify space rocket
boosters shown in Fig. 1 center (provided by courtesy of T Dworetzky). From left to right, these are Goddard
(1941), V-2 (German, 1944), Redstone (1961), Atlas Centaur (1962), Delta 3920 (1982), Titan 34D (1982), Saturn V

(1967), Ariane (European 1979), Energia (Soviet 1987), and Conestoga II (Future). Automated feature extraction

can also be useful to update maps as well as to help manage earth's resources. For example, an extra road through

the palm forest was discovered by Environmental Research Institute Michigan (ERIM) in Fig. 1 (Bottom) D.

The trend in the modern telecommunications is toward multi-media, higher-speed and increased

intelligence (Fig. 2 (a)). Thus, another application of intelligent machines is, according to NTT Review (Vol. 1,

No.l May 1989), a Broad-Band Integrated Service Digital Network (B-ISDN) that has been proposed and will

probably undergo construction around 1995 (see Fig. 2 (b), used with permission). B-ISDN will have the

capability of processing voice, images, and text, simultaneously based on neurocomputing.
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Figure 1.
boosters.

(Top) NASA's Space Shuttle Discovery. (Center) Feature extraction to identify various space rocket
(Bottom) Automatic feature extraction to update maps and to help manage earth's resources.
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Associative memory can mix the voice and image spectral components by vector outer products (shown in

DARPA's Report as a dotted matrix array in Fig. 2 (c)). This cross correlation information can be processed at the

data rate of about 3 Gb/s. Usually such a high data rate requires optical computing based on optical switching

and coherent optical transmissions. However, neurocomputing's debut in telecommunication is predicted by NTT

to be five years earlier than optical computing, despite extensive research efforts in optical computing by AT&T
& others.

REVIEW OF NEURAL NETWORK LEARNING ALGEBRA

Neural network computing is a nonlinear system that satisfies 4 none-principles with the fifth none-

principle remains to be worked out. These are: (1) a none-linear threshold logic of neurons, (2) a none-local

associative memory, (3) a none-stationary neurodynamics, and (4) a none-convex system energy, meaning more

than one extremum in the energy landscape. The first one is known to us 30 years ago, when the Rosenblatt's

perceptron was proposed to be a random collection of neurons. It had been shown by Minsky and Papert to be

insufficient for the natural intelligence, and thus giving the need to the birth to AI. These 4 none-principle can be

approximated by (1) piecewise-linear, namely binary neurons, (2) piecewise-local, namely the rank-1 vector

outer product, (3) piecewise stationary, namely iterative revisions, and (4) piecewise convex, namely local

gradient descents. In these controlled approximations, these interwoven complex principles become decoupled

and amenable to powerful computer simulations. Since then NI has been coming a long way, there remains a

missing fifth none-principle. Such a none-programming learning principle has been claimed by some, but the

hidden teachers/programmers remain to be unraveled to most of us for pedagogical reasons. This is the state of

the art of neurocomputing theory.
Neurocomputing learning algebra are based on the variants of Hebbian ideas. Giving two random inputs

of two neuron firing rates about 100 Hz, ui u j, there are limited algebraic structures that one can manipulate with

to extract meaningful information. If the change of synaptic weight at the ith and the jth interconnection, AWij,

should be related to the inputs as follows:

• Correlation Learning: AWij - ui uj

(maximum information-exchange rule between a pair of random firing rates)

• Gradient Learning : AWij _ (D i - vi ) uj
(Error correction by a pre-set output goal D i that decides when the change of actual output v i

stops: the delta rule)

• Competitive Learning AWij = ui ( uj - Wij)

(any change must balance against the old cluster establishment wij)

• Differential Learning AWij -_ (dui/dt) (duj/dt)

(Only time rate changes, derived by Taylor series expansion of ui(t), matters)

REVIEW OF NEURAL NETWORK ARCHITECTURES

Neural network architectures are important for parallel and distributed computing. There are: one layer

of Hopfield's Associative Memory (AM), two layers of Grossberg's Adaptive Resonance Theory (ART), and three

layers of Rumelhart's Back Error Propagation (BEP), as shown schematically in Fig. 3, Learning Algorithm-
Architecture as follows.

• In the left hand column of Fig. 3, similar inputs Xi are mapped into similar outputs Zk in a feature

space. Such a (hetero-associative) matrix memory is formed by the vector outer product forming a matrix denoted

as IZ k xiTI, where the superscript T stands for the transpose of the column vector X (indexed with the component

i) and the column vector becomes a row vector. Matrix memory is a static version of Hopfield neural networks,

because of the fixed point coding between the input and the output requires no learning. By a fixed point coding we

mean that "write-by-outer-product" and "read-by-inner-product" and using the matrix-vector operation without
iterations.

• In the middle column of Fig. 3, when the similar inputs produce the surprising outputs, an extra layer is

introduced to interpolate these abnormal results by means of supervised training. The difference I D - Z I from the

output Z with respect to the desired output D is considered to be the error propagates backward by means of a
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local gradient descent methodology. The system can have the potential for the generalization. There are _everal
theories about the size of the so-called hidden layer and the ability to do the abstraction ( with more neurons

than that of input nodes) or the generalization (with a fewer neurons). The degree of freedom must match the

number of sample classes to be classified based on the orthogonal feature space rain-max concept described in the

following section. In such a quasi-orthogonal storage, this rule seems to be reasonable in assigning credit-or-
blame.

• When the desired output D is not yet known, Grossberg model of Adaptive Resonance Theory (ART)

becomes handy. It might be thought as to flip down the unknown output layer in order to compare the unknown

input directly as shown in the righthand column of Fig. 3. The master has its own top-down wires T jk (shown by

dotted lines), while the donkey has its own bottom-up wires b ij. In order to carry out automatically the

clustering technique by following the leader, the top layer master puts his feet into donkey's input xj to test his

own normalized prediction IS <xj I Tjk I Xk> I / I S <xj I Xk> I with a predetermined parameter, called the vigilance

parameter between 0.5 to 0.9. Therefore, the difference between the traditional control theory with the negative
feedback and the neural network is that both the incentive/carrot and the punishment/stick are used in the

biological model having both the excitation and the inhibition exerted at different parts of the self-organized

system.

LearningAlgorithm-Architecture
AM BEP

Single layer Hidden layer
Rumelhart et al.

Hopfield et al.

ITkjl= IZ kY]l

I To I= I ZkXTI1 IWii I= IY.] xiTI

ART

Double layer

Orossberg et al,

Master-donkey &
Carrot-stick model

(Bio-Control Theory)

Zk _V_ Flip down top layer

xi e Bottom-Up
Xi Resonance

SimilarinputX.
1

SinilaroutputZ k

FixedPoint

Energy Landscape

Given Error = ID k- Z k I Define

Assume lTkjl=ITo I Vigilance=

Let D k =ITkjlY i
Find Y, and IW,.

] ]1

ITkj Xj I/IXjl

Figure 3. Review of Learning Algorithm-Architecture.

An interesting taxonomy dilemma about counting of layers is due to the ambiguity of counting about layers

of neurons or about layers of interconnects. The single-layer Hopfield architecture seems to have two layers of

neurons, with respect to the three layers of Rumelhart architecture. On the other hand, the Hopfield
architecture is considered to be a single layer on a VLSI design. This dilemma may be resolved by asking: What is

more important in counting, the layer of interconnect synaptic weights, or the layer of neurons ? Since the

synaptic weights contain the important memory information, then Hopfield's network should be counted as one

layer.
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Designs of Energy Cost Functions in A Neuronic Vectorial Representation

An important question for practical applications is how to speed up the training process and to insure a
fast convergence of weight adjustment? We have suggested a general procedure of Taylor series expansion of the

clustering-declustering mini-max energy to estimate the synaptic weights. Here, we extend the procedure by a
self-consistently variational technique to make the truncated higher order terms of the Taylor series negligible.

A top-town design of a hard-wired neural network algorithm has been initiated by Hopfield, et al, for
constrained optimizations. We consider a supervised top-down design goes beyond Hopfield's attempt. The

minimum clustering of the alike and the maximum declustering of the disalike seems to be two contradicting
goals. A tradeoff can be mathematically constructed by the linear combination of those pairs alike in the
numerator and the pairs of disalikes in the denominator of a mini-max energy formalism (schematically shown in
the cost energy expression of Fig.4).

Top Down Design of Hard-Wired Neural Networks

Mini - Max Energy_ Prin ciple

I
Energy = __ + E ]IntraclassDistance]
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Taylor Expansion to derive multiple layer interconnects

1 1

Energy= 2 _ Ti,lV V _ T V V. V" i j 6 i,j,k i,j,ki l k

Figure 4. A top-down design of Neural Networks.

Let us consider some application of pattern classifications. The class of physically different objects {o, O,
p, P, q, Q} need to be cleverly pre-processing by a smart sensor mimicking our eyes or by ourselves and then endow

our wisdom about how we classify the set with a functional mapping into a feature space { o(Vi), O(Vi), p(Vi),

P(Vi), q(Vi), Q(Vi)} spanned by a sufficient set of neurons Vi mimicking the human visual system of the brain

(Szu & Scheff 1989). The first term of the energy in the denominator is similar to the Coulomb energy of

repulsive electric charges (reduced Coulomb energy model of Cooper, et al., and Lorentz forces of Sayeh, et al),
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and the second term in the numerator is similar to the least square method(when in an arbitrary power becomes

Kohonen's kth norm clustering method).
While the first order derivative is reserved for the aforementioned neurodynamics equations, the second

order derivative when it is evaluated at the equilibrium value: Vi=V(°)i, Vj=V(°)j becomes the Taylor's
coefficient

T(O)i,j = (32E/3Vi3Vj) I Vi=V(O)i,Vj=V(O) j

Then, the Hopfield-like hard-wired interconnect T(°)i, j become soft-wired Ti, j by means of the Hebbian learning

that make the cubic order negligible.

Ti, j =T(°)i, j + _ 8Vi 8Vj

Ti,j,klVi=V(O)i+_Vi,Vj=V(O)j+SV j << T(°)i,j

Similarly, the procedure can be analogously extended to the three layers:

Ti,i,k=T(°)i,i,k, , + ¢ f(5 Vi_Vj_Vk)

which makes the next fourth order derivative negligible. The case of hidden layer architecture means that

Ti,j, k is a block-diagonalized tensor of which the input ith layer can not communicate with the kth layer output

layer without going through the jth hidden layer of neurons.
We can show that a single layer of a fully interconnected Hopfield network of five neurons of 25

interconnects can be reduced by the use-it-or-lose-it principle to 6 interconnects. Without actual physical

rearrangement, it becomes topologically equivalent to a three layer of Minsky nets by clamping 2 input neurons

and 1 output neuron to be trained repeatedly with the "exclusive OR" input-output relationship. This illustrates
the second computing principle that can not only be used to determine the learning algorithm but also used to

derive the neural network architectural change consistently.

Experimental aspect of the unified learning theory has been demonstrated by NTT scientists using several

life neurons, extracted from the hippocampus of chicken brain. In delayed video recording they have shown that

neuronic hair fibers Tij grow for seeking out the nutrition and other neurons, in a competitive learning fashion.
The winning hair fiber has grown fatter into a mature axonic interconnect, while the other loser shrinks off, on an

electronic chip substrate covered with the life sustaining liquid. The present unified theory is possible to explain

such a growing synapse because of the extended McCulloch-Pitts neuron model with two transfer functions for two

independent degrees of freedom, namely the sigmoidal firing rate transfer function and the synaptical transfer
function. Such a model has been coined with a name of the hairy neuron neural networks (Szu, 1989).

NEUROCOMPUTING IS MORE THAN PARALLEL COMPUTING

The famous von Neumann bottleneck, 109 operations per second (ops), for a sequential computer has been

circumvented by parallel computing models which require lock steps among multiple processors controlled by a

precision clock cycle that has unfortunately created the second bottleneck, 1012 ops, (that I wish to call) the five

W bottleneck, namely "who should do what, when, where and how" bottleneck, due to the necessary trade off
between the actual execution and the communication for timing and assigning jobs among multiple pipe lines.

Therefore, the following asynchronous neurocomputers are fundamentally important and can make possible a

cheaper VLSI fabrication of neurocomputers. Although the fabrication advantages without the demand of

timing accuracy is conceivable, but without neuronic processor timing the dynamics about when and how the
collective computing is finished requires mathematical insurance. Thus, we will prove three theorems for three

neurocomputing learning mechanisms with hard-wired, soft-wired, and brittle-wired interconnects. Our purpose

is to point out the possibility of allowing the system to determine its own topological structure, by means of a

dynamically reconfigurable hairy neuron model described below. In order to minimize the overall energy,

dynamically reconnected neurofilaments Tij (located at the protein-mediated output axons) can play an equally

important role as the synaptic junction Wik weight adjustments (located at the ion-mediated input dendrite

tree). The extra degree of freedom of the hairy neurons is the synaptic transfer function having a nonnegative

slope

Tij=f(Wik); (dTij/dWik) > 0
while the McCulloch-Pitts neuron model has one internal degree of freedom prescribing the firing rate transfer

squash function
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Vi = g(Ui) ; (dVi/dUi) _>0

The following three convergence theorems all depend on the mathematical truth that (d (any real quantity)/d

ti) 2 > 0 with respect to any time axis:

ti =ti (°) + ¢i t,

where the information arrival time has an arbitrary initial time ti (°) and a positive time scale factor ¢i > 0

with respect to a collective or universal time axis t.

(1) Hopfield-like Asynchronous Computing by Hard-Wired Nets El(V)

We consider first a system of a hard-wired neural networks. We assume a network activity energy El(V)

in terms of the output firing rate vector V with the components V i whose i index runs from one neuron to a million,

e.g. the mega-Cray. We can use either EI(V i) or El(V). The input firing rate to the ith neuron is wired according

to the McCulloch-Pitts model with the bias @i:

Ui =Yj WijVj + @i. (1)

The synaptic weight Wij at the jth junction of the ith neuron input dendrite has a physical gap, analogous to the

spark plug, through which the ion-mediated firing rates from other outputs Vj are collected. Then, Hebbian
learning would mean the changing of the spark plug gap for tuning up the car engine firing rates. Due to the

diffusion of discrete ions through those synaptic junctions, the firing rate fluctuates like a discrete time series at
the molecular time scale t in the order of one millisecond. The information flow with a reduced fluctuation of the

neurotransmitters plays an important annealing role for the global convergence of the neurodynamics.

Each neuron can be operated at its own time axis:

ti =ti (°) + _i t, (2)

where the information arrival time has an arbitrary initial time ti (o) and a positive time scale factor Ei > 0

with respect to a collective or universal time axis t. This asynchronicity is essential to account for different

information flow rates due to the biological inhomogeneity at neuronic level.

The total input is instantaneously mapped to the output by a nonlinear transfer function g,

Vi = g(Ui) (3a)

A squash function known in biology as a sigmoidal function is often used

g(x)=l/( 1 + exp(-x)) (3b)

for the simplicity of the analytic slope:

dg/dx = g(1-g) > 0, (3c)

which vanishes at g=0 when the neuronic decision means no, or at g=l meaning yes. This set of Eq. (3a, b, c)

describes an analog model of McCulloch-Pitts neurons. The original proof of convergence by Hopfield uses

explicitly a quadratic energy expression among neurons for easy analog VLSI implementation. An independent

proof has been given by Cohen and Grossberg that does not require the symmetry property of interconnects.

Each fine grained processor has been modeled in this paper by a different propagation speed governed by

the first order equation:
(dUi/dti) = - (3El(V)/3Vi), (4)

driven by a local energy gradient.

The collective answer should emerge at (dE/dr)=0 when the seemingly random computing without the

lock-clock synchronizations. With respect to the collective time, the following macroscopically irreversibility:
(dE/dt) < 0 will be guaranteed.

Theorem h Asynchronous Convergence based on (dEl(V)/dt) < 0.

If the neural network energy El(V) depends only on the set V of all output firing rates Vi, and if and only

if an arbitrary transfer function, Vi=g(Ui) has a non-negative slope: (dVi/dUi) > 0, then the change of each

neuron input U i governed by its own time axis, through the first order dynamics: (dUi/dti) = - (3EI(V)/OVi)

where ti =ti (°) + ai t with ¢i > 0, will guarantee the monotonic convergence (dE1/dt) < 0.

Proof: The differential increment of in time must maintain the direction of the time flow, Eq. (3b)

implying a positive characteristic factor,
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dti = _i dt ,or, (dti/dt)= _i > 0

The energy-gradient is so-to-speak the force upon the axonic output that changes the firing rate of the total

dendritic input Eq. (1). Nonetheless, the global energy converges with respect to the collective or universal time
t,

(dEl(Vi)/dt) = Xi (3E1/OVi) (dVi/dti)(dti/dt) (5a)

= - Yi _i (dUi/dti) (dVi/dti) (Sb)

= - EL ¢i (dUi/dti) 2 (dVi/dUi) (5c)

_<0. (5d)

Eq. (5a) is obtained by the chain rule of differentiation; in Eq. (5b), use is made of Newtonian Eq. (4) to eliminate
the the energy slope ; Eq. (5c) is merely the identity (dVi/dti)=(dVi/dUi)(dUi/dti) used to produce the second

power of (dUi/dti) in Eq. (5c). The last inequality Eq. (Sd) is based on the mathematical truth that the square of

arbitrary real number

(dUi/dti)2= (Real Numbers)2_> 0

must be nonnegative in any time scale.

In the general convergence proof for arbitrary time axis ti with ¢i > 0, we require no detail structure of the

energy function, other than once differentiable. Thus, we have indeed verified the intuition that nothing changes
(dE1/dt) = 0 at the moment of convergence. This theorem may be called the first asynchronous neurocomputing

principle that predicts the macroscopic irreversibility (dE1/dt) < 0 from the microscopic reversible but time-

asynchronous neurodynamics Eq. (4). The irreversibility is due to the necessary and sufficient condition Eq. (2) of

the nonlinear transfer function g (that is equivalent to the stosszahl Ansatz of the binary collision transfer

function in the Boltzmann Transport Equation). Although the proof similar to the Lyaponov theorem in the

standard control theory, the learning mechanism in bio-control theory has been left unanswered.

(2) Rumelhart-like Weight-Adjustment Learning: Soft-Wired E2(Wij)

Due to the biological inhomogeneity, the energy gradient descent methodology may be slightly

generalized to a time-asynchronous learning algorithm that each neuron could have its own time axis

(dWij/dti) = - (3E2(Wij)/OWij), (6a)
dti = _i dt, (6b)

Rumelhart, et al., has applied Eq. (6) to a feed forward and fixed layer architecture, within the synchronized

layer of neurons: _i= 1. A slightly generalized convergence proof of time-asynchronous neurocomputing is given
as follows:

Theorem Ih Synaptic Adjustment Convergence:

(dE2(Wij)/dt) = Xi (3E2/OWij) (dWij/dt)

= - Xi (dWij/dti) (dWij/dti)(dti/dt)

= - Y_i ¢i (dWij/dti) 2

<0

(Ta)

(7b)

(7c)

(7d)

The adjustment of the synaptic weights Wij can be derived implicitly in terms of the square error of the

desired output D from the actual output V, when a given input U is fed into the layered network. Such a

methodology is known as the backward-error-propagation resulting in a delta learning rule to assign the credit or

the blame to other layered neurons behind them. To illustrate both energy functions EI(V i) and E2(Wij), we
assume

E2(Vi(Wij)) = (1/2) Y_i ( Di - Vi) 2 (8)

to be the square error of the desired response Di from the actual output Vi, which, in terms of the analytical

transfer function g of the input Ui=Y.j Wij V'j + @i Eq. (1), are the upward link synaptic weights. We denote the

set of (input, actual output, desired output) respectively as (Ui, Vi, Di). If there is no error: (Vi - Di) = 0, no
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learning takes place. The upward link weights Wij are adjusted to reduce the difference, by multiplying the
time-dependent factor ¢i to both hand sides of Eq. (6a).

Ei(dWij / d ti) = aWij = -_i(3 E / 3Wij)

= -¢i{(3E / 3Vi) (dVi / dUi)} (3Ui / 3Wij)

= -¢i{(V i - Di)Vi( 1 - Vi)} V'i (9a)

where the straightforward differentiation has produced the result.

The delta learning formula is the input energy change: - {(3E/OVi)(dVi/dUi)} = - (3E/OUi) - 6i with

respect to the top layer input: Ui=Y.j Wij V'j + @i in terms of the upward synaptic links Wij. Such an energy
change at the top layer input is propagated downward to the the input energy change with respect to the hidden

layer input: U'k = X m W'km V"m + @'k, in terms of the downward synaptic links W'kj

i - - (3 E/OUi) = -E k (3 E/OU'k) (3 U'k/OUi)

= _ k 3'k X m(3 U'k/OV"m) (3V"m/OVi) (dVi/dUi)

= (dVi/dUi) E k 6'k W'ki (9b)

where the approximation equality sign _= is due to the replacement of the unknown top layer input Vi with the

known bottom layer input V"m. Thus, the delta learning rule remains to be approximately independent of
neuronic time axes.

8j= Vj(1-Vj )EkS'kW'kj (9c)

(3) Morphology Convergence for Hairy Neurons with Brittle-wired

E3(Vi;Tij)

In this section, we wish to formulate a set of neurodynamics equations which can settle itself into an

appropriate network architecture, e.g. one layer of Hopfield, three layers of Rumelhart, or two layers of

Grossberg. Neurophysiological experiments have recently shown that an active neuron can grow hairy

neurofilaments, denoted as Tij, in competing for nutritions and networking partnership against other neurons, and

has been called a hairy neuron model(Szu 1989). The distinction between input synaptic weight Wik from the

output axonic neurofilament Tij is necessary because of the recent neurophysiologicai experiments: (1) the use-it
or lose-it synaptic pruning in one eye jack of a new born kitten, and (2) the actin protein generating the growth of

neurofilaments. These neurofilament hair lines are competing for food and partnership. The winner grows fatter,

while the loser shrinks thinner. The active growth of neurofilament Tij reaches out and touches other neuron,

and becomes eventually matured and retracts itself in forming a physical gap, the synaptic junction Wik, for

better resistive control of the ion diffusion potential without the initial direct contact. In order to take into

account the possibility of the pruning of synapses Wik (1), and the active growth of neurofilaments Tij (2), the
synaptic weights Wik at the ith neuronic dendrite tree and kth junctions are assumed to be dormant variables,

while the neurofilaments Tij located at the ith axonic output can grow into the jth neuron with the active tread-
mill microtube assembly mechanism. Thus, we have extended the classical McCulloch-Pitts neuron model, Eq.

(2), to include one more degree of freedom, such as the synaptic transfer function

Tij=f(Wij) (10a)

between the axonic filaments Tij (protein actin-driven for dynamic growing/pruning) and the dendrite synapses

Wij ( positive ion-driven firing rates). The biolo]gical survival principle, use it or lose it, can be applied to the

neuron level to explain the observed fact of a reduced synaptic gap density by a pruning mechanism in the one eye

jack experiment on a new born kitten. In this experiment, a patch was place over the eye of a new born kitten. The
post-natal development of its brain had no optical inputs and the optical processing neural networks died off

leaving the kitten normal eye function blind. It will take a life long training to regain the binocular vision. The

synaptic transfer function Eq. (7a) becomes, in the new born or high gain limit, a binary step function of the

threshold b and the step size a.

fix) = a step(x-b) (10b)

297



in the first pass a blurred template which had a correct statistics of image pieces through the straightforward

pointing-and-tracking summation of many frames (about 16 distorted fields) according to the centroid of the
whole frame (Szu & Blodgett 1982) (c.f Distorted Fields, Object, Long Term Average, Centroid Correction). This
effect had demonstrated the need of a smart sensor concept such as the eye which can see a weak star during an

"instance of good seeing" (Szu et al. 1980) through the turbulent sky. On the contrary, the undiscriminating and

dumb telescope camera can only produce a blurred picture of the weak star in the over exposed picture by the
whole frame summation based on the straightforward pointing-and-tracking gimbal without any adaptive

phase for turbulence medium phase correction mechanism.

Recently, a sequence of distorted imagery that consists of a training set of 15 samples of hand-written
characters (each has 4 by 4 pixels, only trained to recognize 3 classes) has demonstrated the ability of

generalization: recognize a new class of letter (Szu&Scheff 1989). This was done by means of critical feature

extraction using the "mini-max concept" to discover by itself a new class of 5 more hand-written characters by
analyzing the "intra-interclass clustering property" on the self-constructed feature space (c.f. Fig. 6 for 20

samples of 4 classes). This example used a table top computer, because the Gram-Schmidt orthogonal feature
extraction was based on the associative memory employing the Fixed-Point Cycle Two Theorem (Szu, Scheff

1989). Such a procedure of parallel Gram-Schmidt constrained orthogonalization could be exceedingly usefully
for a covert communication constrained by call signs and known scrambling instruction, because feature extraction

by means of the straightforward projection is not permitted to obliterate critical portion of the signal. However,

any practical construction of large set of orthogonal feature vectors could be subject to a realtime processing

bottleneck. In this paper, the Fast Simulated Annealing (FSA) technique is adopted to alleviate the bottleneck

problem.
Image processing by annealing techniques have been attempted (Geman & Geman,1984) (Smith et al.

1983) mainly for noise/distortion reduction. Neural networks have been recently applied to pattern recognition
by Kohonen, Fukushima, Grossberg, Hopfield, etc.. White noise annealing and neural networks are combined

through the Boltzmann Machine (Hinton, Sejnowski, Ackley, 1984) of which colored noise variant has been

referred to as Cauchy Machine (Szu 1987) (Scheff &Szu 1987) (Takefuji & Szu 1989)

SPATIO-TEMPORAL IMAGERIES

A useful clutter rejection hypothesis is that man-made vehicles are designed to minimize the

hydrodynamic drag via streamlined shapes and wheels while the natural environment of tree trunks is mainly

vertical against the gravity (unpublished work of J. Landa, H.Szu). Thus, a sequence of imagery of land vehicles

passing by bushes is considered, Fig. 7 (a). When a land vehicle moves by a tree, the partial occlusion of the

vehicle by the tree trunk can be easily overcome by a properly pointing tracking, zooming, imaging on the moving

vehicle. The image sequence can be averaged and threshold to get rid of the relative motion between the tree and

the vehicle, Fig. 7 (b), together with the 9 by 9 scanning Peano curve. The centroid pointing and tracking of the

vehicle is assumed to produce the averaged gray-scaled image < Ic(x,y) >

< Ic(x,y) > = Xj I j(X+xoy+yc)/frames (13)

where (x c, Yc) is a vehicle local centroid coordinate. After a certain threshold, the obscuring effect of the tree

and bush will be minimized. Fig.7 (describe the templates)

Lc(x,y) = Threshold( < Ic(x,y) > ) (14)

Let the critical feature of the template class-c be denoted as fc(x,y). Then, the performance criterion is the

minimum distance between the template of the c-class=l,2 together with the direction cosine in the numerator,
and the maximum difference between feature vectors in the denominator. Thus, the mini-max filter energy is

E(f c )= a _ c _ c' ( < fc I fc' >) + b X c=1,2 .... I fc" Ic 12 +X c _ c' d / I fc" fc' 12 (15)

where the coefficient of the direction cosine via the inner product < [ > may be heavily weighted, e.g. by setting a

= 10 (relative to b = 1, c=1, and d=10). The change of energy is defined as A E = E new - Eold.

CAUCHY MACHINE

The image space is 2-D; but the search space can be l-D, provided that space-filling scanning technique

is adopted here for mapping 2-D imagery space to 1-D search space and yet preserving the local neighborhood
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Figure 6. Hand-written character recognition by orthogonal feature extraction using constrained Gram-Schmidt
orthogonalization (GSO) procedure.
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Appendix A : Fast Simulated Annealing Algorithm (TRUE_BASIC Version)

DATA 4_5_8_9_11__4__5_16__7_38_41_44_46_47_5__51_52_53_56_5758_59_67_69_7__71_72_78_79 !input 81 Peano-scanning pixel#

DATA 4_5_8_9_12_13_14_15_16_17_3__31_37_42_43_46_47_5__51_52_53_56_57_58_59_62_63_69_7_ !1= black feature Eq. (13)

DIM fl(81),f2(81),avel(81),ave2(81),ftl (81),ft2(81)

M AT ave2 =0

FOR n=l to 29

READ k

LET avel(k)=l

NEXT n
FOR m = 30 to 58

READ J

LET ave2(J)=l
NEXT m

RANDOM

FOR t=l to tmax

LET temp=To/(l+t)
LET theta=(rnd-.5)*Pi

LET dx=int (temp*tan(theta))

LET xnew=mod(x+dx,82)
IF xnew=0 then LET xnew=81

IF f2(xnew)=0 THEN
LET ft2(xnew)=ave2(xnew)

LET ftl(xnew)=0

ELSE

LET ft2(xnew)=0
LET ftl(xnew)=avel(xnew)

END IF

LET enew= 0

LET denominator=0
LET efl =0

LET el2=0

FOR n=l to 81

LET efl=efl+(ftl(n)-avel(n))*(ftl(n)-avel(n))

LET ef2=ef2+(ft2(n)-ave2(n))*(ft2(n)-ave2(n))

LET denominator=denominator+(ftl(n)-ft2(n))*(ft I (n)-ft2(n))

LET enew= enew + ftl(n)*ft2(n)

NEXT n

LET enew= a*enew + b'ell + c*ef2 + (d /denominator)

IF enew<eold then

MAT f2=ft2

MAT fl=ftl

LET eold =enew

LET x=xnew

END IF

IF enew>=eold then

IF (rnd*0.5)<(1/(l+exp((enew-eold)/temp))) then

MAT f2=ft2

MAT fl=ftl
LET eold=enew

LET x=xnew

END IF

END IF

PLOT POINTS :t,xnew+200

PLOT I-K)INTS :t,x+100

PLOT POINTS :t,eold/2
NEXT t

! True_Basic Matrix Operation

! read an object into ave1, namely I1, Eq. (13)

! read another object into ave2, namely I2, Eq. (13)

random number rnd generated [0,1]

after initialize the display

Fast Simulated Annealing cooling schedule

uniform theta using the radian angle option

new pixel by T tan(theta), Eq. (15)

module for 81 scan pixels

constants are typed into the code at run time

!hill climbing Eq. (16)
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